

CTE Tailored Materials for

Hybrid Mirror Systems

Sept. 17, 2003

By Dr. Lawrence Matson

Directed Energy

Surveillance

Requirements Depend on System Needs

- Areal Density: AMSD (<15 kg/m²), DLM, ABL/Directed Energy (33-70 kg/m²)
- Surface Figure: $< \lambda/20$ (Low Spatial Frequency Error)
- Surface Finish/Roughness: < 10 nm (High Spatial Frequency Error); < 2 nm of DE systems
- Frequency: Depends ABL (PM: >400 Hz)
- Production Times: AMSD (Goal: < 2 years); SBIRs (Now 300 days, Goal: 60 days); ABL(Now: years, Goal: months)
- Production Rates: DLM, SBL (> 200 m²/yr); World Production Rate 50 m²/yr
- Radius of Curvature Matching: Deployable Optics (5 meters +/- 2%, with ROC Matching < 40 micron difference between segments)
- Size: SBIRS (< 50 cm), ABL (1.5 m), JWST (6 m), SBL (15m), LDO (25m)
- Thermal: ABL (Ambient Air), SBL(Ambient Space), SBIRS-Low (Cryo)

Focused on Increasing Performance in Areal Density/Lightweight, Durability, Production Time, & Production Rates

Stability Requires CTE Matching Between Components

CTE Tailorability in Glass

Alloying to Increase Openness

 $SiO_2 + 7\% TiO_2$

Vapor Grown [Corning/ULE]

Precipitation of – CTE Crystals

 $Li_2O + Al_2O_3 + SiO_2 (LAS)$

Melt Grown [Schott/Zerodur]

					RT Fast			
		Young's		RT Thermal	Fracture			Typical
	Density	Modulus	CTE @ RT	Conductivity	Tensile	RT Fracture	Hardness	Surface
Properties:	(p)	(E)	(α)	(k)	Strength	Toughness	Knoop	Finish
Units:	Kg/m ³ x 10 ⁻³	GPa	ppm / K	W/m K	MPa	MPa-m ^{-0.5}	kg/mm2	Å
mirror #1 DESIRED:	LOW	HIGH	LOW	HIGH	HIGH	HIGH	LOW	LOW
Pyrex (Corning)	2.23	60.00	3.20				472	
Fused Silica	2.20	73.00	0.55	1.50		0.77	475	
ULE (Corning)	2.20	67.00	0.02	1.30	100	1.8		1 to 2
Zerodur (Schott)	2.53	91.00	0.05	1.67	110	0.9		2
C/Pyrex Composite Disc.	2.00	168.00	0.10	20.00	600	22	470	1000

Problems: Non-homogeneous Dispersion, Segregation, and Coarsening

Zero CTE Glass Sol's, Foams, Spheres, Balloons & Arrays Polishable Glass layer

- AFRL/ML **DUS&T Program** MSNW Inc. shall produce the glass materials needed for constructing zero CTE glass microsphere and microballoon arrays.
- -Glass microsphere arrays will minimize quilting distortions and eliminate continuous crack paths along joints as seen in web-facesheet designs.
- Microspheres and microballoons can be used as fillers in PMC mirror substrates.
- **Phase I (funded)** Produce zero CTE sols by **Solution Alloying {similar to ULE}**. Then fabricate bonding agents, coatings, microspheres, microballoons, and arrays.
 - Obtain mechanical properties as a function of geometry & density for glass arrays.

Phase II (not funded) To design, fabricate and test a 0.5m array mirror

C_{fiber} /Glass Composite Mirrors

- In the 1980's UTRC produced carbon fiber reinforced glass [C_f /Glass] in both continuous and discontinuous forms.
- •The CTE of the material was tailored to near zero values.
- •The density was reduced and the strength, modulus, and fracture toughness were drastically increased.
- •Unfortunately, these structural substrates could only be polished to 1000A finish and zero CTE Sol-Gel cladding wasn't available.

/	/									
		Glass	[C _f /Glass]							
	α	3.2	0.1							
,	ρ	2.2	2.0							
	σ	100	600							
	E	67	168							
	K_1C	1	22							

Negative CTE, Nano-Disperiods for CTE Tailorability

AFRL/ML + NRO funding supported government and on-site contractor (UES Inc.) personnel to investigate **Particulate Alloying** {similar to Zerodur but without over-aging issues}

- •Develop cubic, negative CTE compound such Soft agglomerates of as ZrW₂O₈ that can be used as dispersiod to tailor the CTE of glass, foams, aero gels, ceramics, metals, and polymers (organic and inorganic).
- •Investigate the production of nano sized powders for uniform dispersions and if needed surface activation for good bonding to a matrix.
- •Status Successfully produced single phase nano sized ZrW₂O₈ powders. Currently scaling up the process to produce quart sized quantities from a single batch

 $100 \text{nm } \text{ZrW}_2\text{O}_8$ powders

Graphite Fiber Reinforced Magnesium and Aluminum Alloys for Space Mirrors

SBIR Program Goals: Develop C_{fiber} /Aluminum and C_{fiber} /Magnesium composite manufacturing technology to produce lightweight mirrors.

Plan: Phase I (completed) - Near net-shape casting using discontinuous fiber mats, fast machining to final shape, deposit Si and polish to final figure.

Phase II (on going) - Joining of segments to make large mirror substrates. Investigate claddings and replication technology using either nano laminates and/or polymer imprint. Mechanical & physical property testing. Optical characterization.

Phase I (negotiation) - Phase I-Near net-shape casting using continuous fiber weaves to increase stiffness, machining to final shape, deposit Si and polish to figure.

Payoff: Very high specific strength, stiffness, and fracture toughness. Easy fast 8 machining will saving time and cost. Replication could eliminate polishing cost.

Siliconized - SiC/SiC and C/SiC Composite Mirror

- Ceracom is a spinoff company of Trition Systems.
- They produced small, partially dense, continuous reinforced SiC/SiC and C/SiC CMC's mirror preforms by Chemical Vapor Infiltration [CVI].
- Melt infiltrated the preform with Silicon to densify as well as replicate the mirror surface.
- Fine polished to obtain the desired surface finish.
- They observed no fiber print-through or figure instability under thermal cycling conditions from RT to 227°C.

Si-SiC/SiC CMC mirror from Ceracom (2inch)

Carbon_{fiber}/Polymer Matrix Composite Replica Mirrors

Replica structures

replica surfac

Mircrograph showing flat replica surface

AFRL IR&D:

- Achieve optical surface quality of carbon-fiber mirror replica structures with resin-rich layer or bonded nano-laminate.
- Marry replica to carbon foam or isogrid composite for high quality, high stiffness, and fast manufacture.

Program Plan:

- Investigate fiber print through and roughness of facesheet based on composite material.
- Eventually investigate surface figure and roughness of nanolaminate bonded to carbon-fiber structure.

Carbon-Fiber Composites

Fiber Print Through Issue

- Fiber print-through is caused by a mismatch in resin and fiber cure shrinkage, CTE, and CME properties.
 - The result is a series of ripples on the surface of the replicated optic.

One solution to this problem is to increase the resin-rich layer thickness to damp out the effects of property mismatch.

• Unfortunately, this results in a thick layer of resin of much higher CTE than the composite substrate.

Carbon-Fiber Composites

Fiber Print Through Issue

- Another solution involves over coating the replicated optical surface with a harder material (glassy sol gel) and polishing the resulting surface. COI has shown this to be viable.
 - The harder material damps out the resin/fiber mismatch errors more effectively than a thin polymer layer.

- Another solution is to applying a layer of nano-fiber reinforced polymer composite between the main composite substrate.
 - The smaller diameter fibers will cause a smaller magnitude print-through effect.

Carbon Nano Fibers

- Carbon nanotubes are a new and exciting material that could be used to make composites for mirrors.
 - Single walled nanotubes display amazing properties that are accompanied by an amazingly high price.
 - Multi-walled nanotubes also have great properties but at a reasonable cost.
 - Diameters as low as 100nm.
 - Tensile modulus of 600 GPa and strength of 7 GPa
 - CTE of -1.0 ppm/C and thermal conductivity of 1950 W/mC.

Carbon nanofiber imaged by scanning electron microscope.

Syntactic Foam Composites

(for replicated optics)

- AFRL IR&D with NRO Support
- Developing syntactic foam models to predict strength and modulus as a function of the sphere size, sphere distribution, and the amount of binder. Validated with experiments.
- Investigate molding with ribs on a replicated surface.
- The figures show 2 replicated mirrors (one with molded ribs), a syntactic foam micromechanics model, and an SEM micrograph of a dry syntactic foam.

Foam Mirrors

(for mirror structural substrates and cores)

AFRL-IR&D

- Carbon foam refers to a broad class of materials that include reticulated glassy, carbon, and graphitic foams that are generally open-cell or mostly open-cell.
- They can be tailored to have low or high thermal conductivity with a low CTE and density.
- These foams have high modulus but low compression and tensile strength. Work is on-going to improve their tensile strengths.
- Fig (a & b): Carbon foam with face sheets of carbon fiber and nano-fiber reinforced polymer.
- Foams of C, Si, and SiC are being investigated by various vendors.

FY03-04 ML Mirror Portfolio In-house R&D for the NRO Hybrid Mirror

Foil Replication and Adhesion

Objectives

•Investigate foil/nanolaminate replication and adhesion technology to eliminate or reduce polishing cost and reduce fabrication schedule for SiC mirrors.

•Key Issues

- •The state-of-the art metallic nano laminate foils based on Cu+CuZr are produced by Lawrence Livermore NL and have a CTE = 13ppm/°K. New foil/nanolaminate chemistries need to be identified that have lower CTEs comparable to SiC and C/Mg structural substrates. Si, SiC, and Si₃N₄ based materials have CTEs in the 2 to 4 ppm/°K range.
- •Methods must be developed to adhere these foils to the structural substrate without affecting the figure (20nm) and finish (1nm) tolerances of the foil.
- •Foil fabrication technologies must be identified that can be scaled to meters.
- •Foil and adhesive stability and degradation limits must be determined.

FY03-04 ML Mirror Portfolio In-house R&D for the NRO Hybrid Mirror

Foil Replication and Adhesion

AFRL/ML + NRO funding supported government and on-site contractor (UES Inc.) personnel to investigate <u>alternate foil chemistries</u>

- •Investigate the chemistries needed to produce a replicated foil or nanolaminate with a CTE ~ 2 to 4 ppm/°K range.
- •We are looking at:
 - a. SiC, CTE=3.8 ppm/°K (20-473°K), Density= 3.2 gm/cc
 - b. Si_3N_4 , CTE= 0.6 ppm/°K (70-400°K), Density 3.8 gm/cc
 - c. Silicon, CTE= 2.7ppm/°K, Density 2.33gm/cc
- •Investigate various deposition methods
 - a. Magnetron Sputtering

- b. Electron Beam Evaporation
- c. Large Area Filtered Arc Deposition(LAFAD) d. Pulse Laser Deposition

- We have discussed many different types of materials where CTE tailorability is used to increase modulus, strength, thermal conductivity, and toughness while decreasing CTE, density, cost and schedule.
- •Small mirrors (3 inches) have been made from each of them to show proof of concept. Larger mirrors (0.5m) need to be fabricated and tested for their limits. Scaleability to 4 meters and NDE techniques needs to be investigated in the future.
- •Mirrors are not the only components that need looked at. Optical benches, deployment devices (hinges and latches), lighter weight + higher stroke actuators, electronic downsizing, and large area coatings are just a few components where advanced materials are needed.
- Unfortunately, a lot of this work is being done under on shoe-string budgets. We need to come together as a community and help formulate a <u>Major US Initiative</u> focused on the development of advanced materials for large, lightweight, hybrid mirrors and optical components that will be needed for numerous application of the 21st century.
- •I would like a list your needs and research suggestions to help sell this initiative.